Tungsten Carbide as an Addition to High Speed Steel Based Composites

نویسنده

  • Marcin Madej
چکیده

Design criteria for high strength tool materials have to include wear resistance of the abrasive particle, high hardness and adequate toughness. Cold compaction and vacuum sintering of PM high speed steels (HSSs) to full density is now a well established technique [1-3]. In recent years, work has been undertaken to sinter metal matrix composites that contain ceramic particles in HSSs by the same route. Most studies have focused on sintering with additions of hard ceramics such as Al203, VC, NbC, TiC, WC and TiN with the aim of producing a more wear resistant HSS type material [4-18]. These composite materials have been developed for wear resistance applications as attractive alternative to the more expensive cemented carbides. Compared with high strength steels, these composite materials have higher hardness, wear resistance and elastic modulus. However, depending on size and distribution, the addition of brittle ceramic particles may cause degradation of bend strength and toughness owing to the initiation of cracks at or near the reinforcing particles. In order to ensure good bonding at the ceramic/matrix interfaces, the ceramic particles must exhibit some reactivity with the matrix. In contrast to Al2O3, which presents no interface reactions with the iron matrix, the diffusion of iron from the matrix into the MC carbide particles establishes a good cohesion across the ceramic/matrix interface. Besides, these carbides are stable in contact with iron during sintering and do not dissolve extensively. Therefore, MC particles were chosen as the reinforcement. A cheap and easy route to develop high speed steels reinforced with MC carbides consists of mixing powders of commercial high speed steel powders with the carbides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Check Tic-coated Tungsten Carbide Tool Wear in Machining Steel

In industrial production systems, including the most important factors in the economic field machining operations, reduce tool wear due to abrasive nature of the phenomenon on many factors, including temperature Lathe tool, influences, machining conditions (cutting speed, speed losses, forcing to rebuild parts of the manufacturing tolerances disassemble tool wear is caused by the phenomenon, as...

متن کامل

Cladding of stellite composite on carbon steel by gas tungsten arc welding (GTAW)

This paper deals with the investigation of the microstructure and hardness of steel samples cladded with satellite 6-WC composites by using gas tungsten arc welding (GTAW) process. For this purpose, steel samples were coated with unreinforced and reinforced stellite (by 20, 30 and 40 wt.% WC). The cladded samples were evaluated by metallographic studies, microhardness measurement and X-ray diff...

متن کامل

Microstructures and Wear Performance of PTAW Deposited Ni-Based Coatings with Spherical Tungsten Carbide

The Ni-based coatings with different content of spherical tungsten carbide were deposited by plasma transfer arc welding (PTAW) method on 304 austenitic stainless steel sheets in this study. The microstructure and wear property of spherical tungsten carbide particle reinforced composite coatings were investigated by means of optical microscope, scanning electron microscope (SEM), X-ray diffract...

متن کامل

Combustion Synthesis of Titanium-Tungsten Carbide Composites in Iron Matrix

Combustion synthesis has been used to produce Fe-(Ti,W)C composites. A simple reactor was designed which made it possible to ignite the samples under controlled atmosphere. Samples with different W/Ti ratio were ingnited under argon atmosphere by an electric arc and a self-propagating reaction was initiated in each sample. Different composites such as WC in Fe-Ti matrix, WC+(Ti,W)C in Fe matrix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017